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A massively parallel three-dimensional nonlinear gyrokinetic flux-tube simula-
tion model is discussed. This simulation is used to study turbulent heat transport
in core tokamak fusion plasmas. This model allows for high resolution simulations
of ion-temperature-gradient-driven turbulence using realistic plasma parameters as-
suming locality of the turbulent fluctuations. The simulation model, computational
techniques, and parallel algorithms are discussed. The use of field-aligned coordi-
nates allows for a natural domain decomposition in the direction along the magnetic
field with good parallel performance. Digital filtering along the field line maintains
proper toroidal and poloidal periodicity. A new approach to parallelization, “domain
cloning,” is presented. Domain cloning is another layer of parallelization. It is an
alternative to a two-dimensional domain decomposition and may be useful for clus-
tered symmetric-multiprocessor machines. Performance results are presented for two
high-performance massively parallel computers.c© 2000 Academic Press

1. INTRODUCTION

There has recently been significant progress in kinetic simulation of turbulent heat trans-
port in tokamak plasmas [1–4]. There are two common approaches or computational models.
First, global simulations, which model the whole tokamak cross section or a large annu-
lar region, are able to simulate plasmas with a minor radius as large a 200ρi [3–5] on
current generation massively parallel supercomputers. Second, flux-tube simulations are
able to simulate arbitrarily large tokamak plasmas with much higher resolution but with
assumptions of locality of the turbulence [2, 6–10]. Here, we will discuss the numeri-
cal implementation, parallelization, and performance of a flux-tube simulation. This type
of model greatly reduces the volume of the simulation domain, and hence, the compu-
tational requirements. It does, however, require imposing more assumptions, which will
be discussed in Section II. The simulation uses a particle-in-cell (PIC) method where the
particles represent full gyrokinetic ion physics using theδ f method [11–13]. The electrons
are treated as adiabatic, i.e., Boltzmann witheφ/Te¿ 1. This adiabatic electron model is
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commonly used for studying ion-temperature-gradient-driven (ITG) turbulence, which is
the physics problem that will be discussed throughout this paper. The flux-tube-reduced do-
main, using field-line-following (FLF) coordinates, was developed by Cowley, Beer, Waltz,
Hammett and co-workers in gyrofluid simulations [7, 9, 14]. A similar approach, called
“quasi-ballooning coordinates,” has been utilized by Dimits and co-workers for gyrokinetic
turbulence simulations [2, 6]. Quasi-ballooning coordinates are not exactly field-aligned
which allows the grid to connect in the (almost) field line direction. Beer’s work also dis-
cussed issues specific to FLF PIC simulation without an actual implementation [9]. We
follow Beer’s FLF approach in this paper and address further computational issues spe-
cific to δ f PIC methods, including filtering along the field line, gyroaveraging, and parallel
algorithms.

The flux-tube reduced domain using field-line-following (FLF) coordinates takes advan-
tage of the field-aligned fluctuation spectra, i.e.,k‖ ¿ k⊥. Instead of simulating the entire
plasma volume, the flux-tube computational domain is a long thin tube representative of
a sample of the turbulence within the core. The tube follows a set of magnetic field lines,
typically spanning one poloidal circuit. The radial size of the box is taken to be small com-
pared to the minor radius of the tokamak. We assume local values for equilibrium gradients
and periodic boundary conditions in the perpendicular directions. In the parallel direction,
boundary conditions are modified by the shearing of the tube associated with the shearing
magnetic field lines. This is taken into account in the simulation using a shift of the parti-
cle’s perpendicular position as it passes across the domain’s boundaries along the field line
following Beer’s prescription [9]. A similar shift is also used for the parallel grid boundary
conditions. The boundary conditions will be discussed in more detail in Section III.

Discrete particle noise is reduced by filtering out largek components of the grid quantities
(in this case, the guiding center ion density). In the perpendicular direction this is easily
performed in Fourier space as part of the fast Fourier transform (FFT) solver of Poisson’s
equation. However, in the direction of the magnetic field, a Fourier filter is not possible
because of the non-periodicity. An approximate Fourier filter could be applied by mapping
a few poloidal passes of the field line (a fewπq R) then using a parallel FFT, but would
involve a relatively large amount of interprocessor communication. Instead a straightforward
multi-step, multi-weight digital filter is utilized. This scheme is very compatible with the
one-dimensional domain decomposition used here.

Domain decomposition in the context of conventional PIC simulation has been shown
to be scalable [15–18]. Here we discuss the implementation of a domain decomposition
using non-orthogonal curvilinear field-line-following coordinates. The domain decompo-
sition involves parceling out equal sections of the domain and their respective particles to
each processing element (PE). Each PE works only with its own subdomain. As particles
leave the subdomain, their information must be passed to the appropriate PE that controls
the subdomain in which the particle now resides. This is achieved by calls to a parallel
particle sorting algorithm first developed by Decyk as part of the “PLib” parallel PIC simu-
lation library [15], and further developed by Tran. The gyrokinetic field solve involves only
local operations in the direction along the field line. This makes a one-dimensional domain
decomposition in this direction natural. Because the domain size is fixed, a domain decom-
position must pack the subdomains more and more tightly as the number of PEs increases.
This reduces the distance that a particle can travel before it passes to the next subdomain
and must be communicated to another PE. As a result, particle sort and communications
times become a larger fraction of the computing time as the number of PEs is increased.
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To circumvent this packing problem, a new parallelization scheme that supplements the
domain decomposition, dubbed domain cloning, is introduced. Instead of packing more
and more subdomains together, domain cloning clones copies of the grid and loads each
clone with its own set of particles. At all time steps, the clones are updated so that each
clone has identical grid information and each clone pushes its own set of particles. This
reduced density of PEs exhibits reduced particle sorting time and outperforms a simple 1D
domain decomposition.

The paper is organized as follows. In Section II, a brief description of the physical model
is given. Section III discusses the numerical algorithms. In Section IV we discuss the domain
decomposition and in Section V the domain cloning algorithm. Timing results and parallel
performance issues are also discussed in Sections IV and V. Section VI shows representative
simulation results and particle convergence properties.

2. PHYSICAL MODEL

The simulation solves gyrokinetic equations for the ions [19–21]. We take the electro-
static limit and assume adiabatic electrons. In addition, theE‖ nonlinearity is neglected
as in Refs. [11, 19] due to smallk‖/k⊥ ordering arguments. Tests with and without this
term indicate that it has very little effect on the nonlinear saturation level or heat flux. In
general, gyrokinetics is a coordinate transformation of the Vlasov–Poisson system from
particle coordinates (Ex, Ev) to guiding center coordinates (ER, µ, v‖, φ), whereER is the po-
sition of the guiding center of the particle,µ= v2

⊥/2B, φ is the gyrophase angle, andv‖
andv⊥ are velocity components parallel and perpendicular to the magnetic field. These
new coordinates follow the gyrocenter of the particle orbit. The transform in coordinate
space is straightforward,ER= Ex− Eρ, whereEρ is the gyroradius. We employ the ordering
of ω/Ä∼ ρ/L ∼ k‖/k⊥ ∼ ε whereω is a typical frequency of interest,Ä= eB/mc is the
gyrofrequency,L is a typical length scale, andk‖ andk⊥ are wave numbers parallel and
perpendicular to the magnetic field. With this, the transformed equation is averaged over the
gyrophase angle of the particles, eliminating the fast time scale of the gyromotion. By taking
the magnetic moment,µ, as invariant (̇µ= 0), the phase space variables are reduced by one
dimension, withµ reduced to a particle parameter (e.g., charge or mass). The gyrokinetic
Vlasov equation can be written as

∂t f = ż · ∇z f = 0, (1)

where f is the gyrophase independent distribution function in phase space andz is a
gyrophase independent phase space variable in guiding center coordinates,z= ( ER, v‖, µ)
[22]. The guiding center equations of motion are given in Ref. [22] and will be discussed
below. The quasi-neutrality condition is [20]

−
(
ρs

ρi

)2

λ−2
D [1− 00(b)]φ = −4πe(δn̄i − δne), (2)

where δn= (n − n0)/n0 is the perturbed part of the density,δn̄i is the perturbed gy-
rophase averaged ion density,b= (k⊥ρi )

2, ρ2
s ≡ (Te/Ts)ρ

2
i , λD ≡

√
Te/(4πn0e2) is the

Debye length, and00 is the gyroaveraged Bessel functionJ0. The appearance of the00

accounts for finite gyroradius effects. For smallb, the gyrokinetic Poisson equation reduces
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to (ρs/λD)
2∇2
⊥φ=−4πe(δn̄i − δne). Note that the 1−00 depends only onk⊥ρi which is

crucial in the implementation of the field solve and choice of domain decomposition along
the direction of the B-field.

To properly treat the adiabatic electron response, we must take the perturbed electron
density to be of the form

δne = e(φ − 〈φ〉)/Te, (3)

whereTe is the electron temperature and〈φ〉 denotes a flux surface average of the elec-
trostatic potential [9, 23, 24]. The proper adiabatic electron response has a strong effect
on the nonlinear evolution. Without this proper treatment, nonlinearE×B shear flows are
suppressed resulting in much higher heat fluxes [23, 25]. The flux-surface-average of the
electrostatic potential requires a global sum in the direction along B, which is an important
consideration for parallelization.

The simulation domain used is a flux tube [9]. This is a long narrow “tube” that follows
a set of magnetic field lines in the tokamak. The assumption of the reduced flux tube
domain relies on the fact that the turbulence is observed to be typically elongated along
the magnetic field line and has short perpendicular variations, i.e.,k⊥À k‖, wherek is a
typical wave number. The flux tube used is the minimal volume necessary to resolve the
micro-instabilities associated with turbulent transport. The formulation assumesLx and
L y, the two perpendicular dimensions of the flux tube, to be much smaller than the minor
radius of the tokamak. We take local values of gradient and equilibrium quantities, e.g.,
q′ =q′|r=r0, T

′ = T ′|r=r0, R= R|r=r0, etc. Dimensions along the B-field are determined by
external parameters such asq, the safety factor, andR, the major radius. Typically, the
simulation domain will span one poloidal circuit, i.e.,θ ∈ [−π, π ].

Field-line following coordinates are used in this simulation. This coordinate system
follows the twisting and sheared magnetic field lines of a tokamak and maps them to
rectilinear coordinates [9, 14]

x = r − r0, y = r0

q0
(q(r )θ − ψ0), z= q0R0θ, (4)

wherer is the minor radius,r0 is the location of the center of the flux tube,θ is the poloidal
angle,ψ0 is the toroidal angle,q(r ) is the safety factor as a function of the minor radius,
q0=q(r0), andR0 is the major radius to the center of the tokamak. It must be noted that
these are not simple Cartesian rectilinear coordinates, in particular, the Jacobian is not equal
to 1. Assuming smallr0/R andLx, the FLF coordinates simplify the problem by providing
simple differential operators

b̂ · ∇ f = ∂ f

∂z
, (5)

(b̂×∇φ) · ∇ f = ∂φ

∂y

∂ f

∂x
− ∂φ
∂x

∂ f

∂y
, (6)

∇2
⊥φ =

∂2φ

∂x2
+ (1+ s2z2)

∂2φ

∂y2
+ 2sz

∂2φ

∂x∂y
, (7)

wheres= 1/Ls= r0q′/Rq2 is the shear scale length assumed to be constant throughout the
box. As with the other gradient quantities,s assumes the local value atr0.
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Theδ f method [11–13] assumes a time independent equilibrium phase space distribution
with a small perturbation that is time dependent having the form

f (z, t) = f0(z)+ δ f (z, t). (8)

This distribution function is inserted into the gyrokinetic Vlasov equation with the result

∂tδ f + ż · ∇zδ f = −ż1 · ∇z f0, (9)

where we have used the factż0 · ∂z f0(z)= 0 andż= ż0+ ż1. In the simulation we use a
Maxwellian equilibrium distribution in velocity and take the spatial distribution to be uni-
form. Theδ f method reduces the noise associated with the discrete particle representation
of f . Here, we keep only theE×B nonlinearity as in Ref. [11].

We evolve Eq. (9) by defining a weight as [12]

wi = δ f

f

∣∣∣∣
z=zi ,t

, (10)

where

δ f =
∑

i

wi δ(z− zi ), (11)

and finite size particles are used to approximate theδ-function in the spatial dimensions
as in Ref. [12]. This eliminates the need to track volume elements associated with each
discrete particle [13]. The weights are evolved in time along with the particle’s phase space
variables according to

ẇi = −(1− wi )

[
ż1∇z f0

f0

]
z=zi ,t

, (12)

which is then deposited onto the grid to solve for the fields, similar to the deposision of a
unit of charge in conventional PIC simulations.

We follow the characteristics of Eq. (9). In field line following coordinates, the equations
of motion are [26]

ẋ = − 1

R0

(
µ+ ρ

2
‖

B

)
sinθ − ∂φ

∂y
, (13)

ẏ = − 1

R0

(
µ+ ρ

2
‖

B

)(
cosθ + r0q′θ

q
sinθ

)
+ ∂φ
∂x
, (14)

ż = ρ‖B2, (15)

ρ̇‖ = −
(
µ+ ρ

2
‖

B

)
r0

q0R2
0

sinθ, (16)

µ̇ = 0, (17)

and the evolution equation for the particle weight is

ẇ = (κEy + Ėx · EE)(1− w), (18)
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to lowest nontrivial order inr0/R, whereB= B0(1− (r0/R0) cosθ), ρ‖ = v‖/B, andκ =
κn− (3/2− (1/2)(v2/v2

th))κT is related to the scale lengths of the density and temperature
profiles(κn=− 1

n
∂n
∂x ), κT =− 1

T
∂T
∂x , andvth= (T/m)1/2 is the thermal velocity). Note that

to lowest order,µ is an invariant of the motion. These equations of motion are for the
guiding center and not the actual particle position and finite-gyroradius effects are taken
into account by four-point gyroaveraging [27], as explained in the following section.

3. ALGORITHMS AND NUMERICAL ISSUES

The particle equations of motion and the evolution equation for the particle weight can
be written in the form

Ż = F(Z), (19)

whereZ= (R, v‖, µ,w, t). The evaluation ofF is a complicated and slow numerical op-
eration because it involves the deposition of the particles on the grid (scatter), the field
solve, and the evaluation of the field at the particle location (gather). Equation (19) is in-
tegrated using a conventional predictor-corrector scheme [28–30] known as the modified
Euler method,

Z̃n+1 = Zn−1+ 21tF(Zn), (20)

Zn+1 = Zn + 1t

2
(F(Zn)+ F(Z̃n+1)). (21)

The conventional leapfrog methods [31] cannot be used because the equations for the drift
motion are first order in time. The modified Euler scheme has the property that the predictor
step is time centered. It also minimizes the number of evaluations ofF by storing the two old
values ofZ. This gives a significant advantage over multiple evaluations ofF that would be
required in higher order Runge–Kutta schemes. However, the predictor-corrector scheme
does require more memory, but this is a minor drawback since memory is typically not a
limitation.

For completeness, we define the (one-dimensional) local truncation error asen+1=
zn+1− z(tn+1), wherez(tn+1) is the exact solution andzn+1 is the numerical solution pre-
dicted by Eqs. (20) and (21) using the exact values forzn andzn−1. Using Taylor series one
can obtain the following local truncation erroren+1=− 5

12z′′′(t)1t3+O(1t4) [30]. Hence,
this scheme is second order in time. In addition, this modified Euler method has a relatively
weak damping rate for a second-order scheme withω1t ≤ 1, γ ∼O(ω1t)3 for harmonic
oscillations whereω is the natural frequency and gamma is the numerical damping rate
[32].

The particles are initialized with a Maxwellian distribution. This is done using a bit-
reversed quiet start [31] in all five phase-space variables. Alternately, data can be read from
a restart file of specified positions, velocities, and weights. This allows check-pointing,
running the simulation beyond the runtime limit, or facilitates a nontrivial initial condition.
The bit-reversed quiet start reduces discrete particle noise at early times and more uniformly
fills the phase space for better resolution (or sampling).

We use a four-point gyroaveraging technique [27], which properly weights the deposition
of charge and the calculation of the electric field over the gyroorbit and is accurate up to to
k⊥ρi ∼ 1.
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In the field-line following coordinates, care must be taken to deposit a circular ring of
charge on the twisted non-orthogonal grid, as well as proper gyroaveraging of the elec-
tric field. The twist of the coordinates due to magnetic shear modifies the the four-point
gyroaverage in the following way

x = xgc+ δi
xρi ,

y = ygc+ δi
yρi + szδi

xρi ,

where(x, y) is the position of the particle at the four points.(xgc, ygc) is the guiding center
position,ρi is the gyroradius of the particle,s is the shear as defined for Eq. (7),z is the
position along the field line, and the (δi

x, δ
i
y) are the ring weight delta functions that take on

the value(δi
x, δ

i
y)i∈[1,2,3,4]= [(1, 0), (−1, 0), (0, 1), (0,−1)] for a 4-point gyroaveraging.

The extra term involvingδi
x in y results from ther dependence ofq(r ) in the definition of

the FLFy (see Eq. (4)) and accounts for the shearing of the coordinate system. It is possible
to reduce the number of ring-points to 2 or even 1, or increase it to 8 or more, but a 4-point
ring is most commonly used and gives reasonable accuracy [27].

The gyrokinetic quasi-neutrality condition is solved using a two-dimensional FFT in
the perpendicular direction. Assuming the size of the box in the perpendicular direc-
tions is not too large andr0/R¿ 1, we take the gyroradius to be a function ofz only,
ρi (z(θ))= ρi 0(1− (r0/R) cos(θ)), whereρi 0 is the value atz= 0. Additionally, k⊥ is a
function ofz, as discussed in Ref. [14]. The parameterb in Eq. (2) then becomes

b(z) = k2
⊥(z)ρ

2
i (z) =

[
1+ 2

r0

R
cos

(
z

q0R

)](
k2

x + (1+ s2z2)k2
y + 2szk2xk2

y

)
. (22)

This form ofb in Eq. (2) allows for simple evaluation in Fourier space.
Filtering in the perpendicular direction is also done in Fourier space to smooth out high

k⊥ noise with wavelengths comparable to the grid spacing. The Fourier filter used is of the
form e−(k⊥ρi )

a
wherea is typically 2–4. An inverse FFT is then done and further filtering is

done along the direction of the B-field in real space.
As will be discussed below, enforcing toroidal boundary conditions requires a shift at the

end of the box in thez-direction. Hence, this direction is not periodic inz, and therefore, a
Fourier filter is not appropriate. In addition, the domain is decomposed in thez-direction,
making FFTs in this direction cumbersome. Instead, we use a two-step, three-point digital
filter [31]. Both steps are essentially weighted boxcar averages of the form

φi = Wφi−1+ φi +Wφi+1

1+ 2W
, (23)

whereW= 1/2 in the first pass andW=−1/6 for the second pass. The first step is the initial
smoothing. The second step corrects for over attenuation. The ion density is passed through
the filter several times, typically three times. This reduces largek‖ noise. As shown in Fig. 2,
small k‖ values(<0.5) are well preserved. At the resolution of the grid spacing, there is
minimal attenuation of∼85%, with a fair drop off for largerk. This is a marked improvement
over a single weight ofW= 1/2 where there is attenuation at all values. This method fits well
with the one-dimensional domain decomposition and the non-periodic boundary conditions
in z. Communication is minimized to nearest neighbors. In the actual implementation, the
digital filter is first performed on the ion density, then the Fourier space filtering is applied
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in conjunction with the FFT Poisson solver. This is done to maintain the volume-averaged
φ equal to zero. We found that digital filtering after the Fourier filter introduced spurious
components from adjacent grid points and produced a non-zero volume-averagedφ.

The smoothed electrostatic potential is now locally available on each processor. The
E-field is then calculated from the electrostatic potential using a centered finite-difference
(CFD) without any communications because nearest grid cells inz are held in buffers.
We utilize double buffering to eliminated the need for communications during the CFD.
Double buffering provides a buffer cell on both ends of the subdomain. This will be explained
in more detail in Section IV. With the E-fields for the subdomain calculated, particles can
be pushed locally without any communications. The next necessary communication is to
update the particles that have moved beyond the subdomain of the processor. Using the
predicted position, the ion density, electrostatic potential, and E-field are calculated and the
corrector step is performed (see Eqs. (20) and (21)).

Because of the non-orthogonality of the FLF coordinates and reduced domain of the flux
tube, the proper boundary conditions are not trivial. In the radial and poloidal direction we
assume periodic boundary conditions. This is based on the assumption that the correlation
length of the turbulence in these directions is small compared to the size of the box in that
direction [9].

The direction along the magnetic field line(z) must be treated carefully since both the
linear eigenmodes and the turbulence are well-aligned with the magnetic field. One end of
the box in thez-direction does not line up with the other end; see Fig. 1. In thez-direction,
we enforce periodicity in the toroidal (φ) and poloidal (θ ) directions at the ends of the box
in z. We follow the prescription of Beer [9] and do a shift in they direction following from
Eq. (4)

δy = ±
(

q(r )
r0

q0
2π

)
modL y, (24)

FIG. 1. Flux-tube computational domain for a present-day tokamak.



GYROKINETIC FLUX-TUBE SIMULATION 597

FIG. 2. Filter function plotted versusk1x.

where the± accounts for either end of the box and the modL y ensures poloidal peri-
odicity (L y is the size of the box in they-direction). This must be done for both parti-
cles and field quantities. Alternatively, one could assume statistical periodicity, as we did
in the perpendicular direction, but this would require that the flux-tube domain be ex-
tended to several poloidal circuits to ensure that the ends of the box are decorrelated. This
would require additional gridpoints as well as particles to fill the larger domain space,
and in turn, more computing resources. Hence, this shift (Eq. (24)) is a more efficient
alternative.

4. PARALLEL ISSUES AND PERFORMANCE

Initially, a very simple parallelization scheme, we termed “a poor man’s domain decom-
position,” was adopted. A copy of the grid quantities is passed to each of the PEs. The
particles however were divided among the PEs. After each charge deposition, a global sum
and broadcast were performed to update the density array on each of the PEs. The grid
calculations are replicated on each of the PEs. It was observed that for a small number
of PEs, this scaled fairly well with particle number. Unfortunately, as the number of PEs
increased beyond 4, the global communication time became prohibitive. Despite its short-
comings, this initial parallelization scheme motivates the domain cloning scheme which
will be discussed in Section VI.

The current implementation uses a one-dimensional domain decomposition in the
z-direction. This takes thez grid spanning from 1 :km and decomposes it intoN sub-
domains of 1 :mykmwheremykm= km/N andN is the number of PEs. Each subdomain
is assigned to one of the PEs and, in effect, the subdomain becomes the simulation domain
of that particular PE. The PEs perform only those grid calculations (deposition of the ion
density, Poisson Solver, CFD) relevant to their subdomain. Each PE pushes only those
particles that lie in its particular subdomain at that particular time step. Load balancing is
not an issue because the particle density is fairly uniform along the magnetic field line.
As particles pass beyond the subdomain of a particular PE, the particle and its information
must be passed to the appropriate PE that is assigned to that region of space. Particle sorting
is performed at the end of each particle update for both the predictor and corrector steps
(Eqs. (20) and (21)).
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The particle sorting routine involves an initialization routine and move routine. The ini-
tialization routine allocates an array for the particles that will be passed to other subdomains
(send), an array to index the particles to be passed (isend), and an array to index the holes
in the particle array (ihole). The move routine determines which particles do not belong in
the subdomain (and simultaneously which subdomain they do belong in) and records their
index inisendandihole, then fills and sorts (by subdomain) thesendarray. The appropriate
portion of thesendarray is passed to the appropriate subdomain. The particle array is then
filled, first filling in the holes usingihole then appending to the end of the array.

In the gather/scatter operations, the CFD, and the digital filter, grid information from the
neighboring subdomain is needed. This could, potentially, be a prohibitive communications
cost. The grid communication is minimized by the use of buffers. A buffer is an identical
copy of a neighboring grid of the adjacent subdomain. This additional memory cost of
storing a buffer reduces the communications cost that would otherwise be needed. Thus,
a particle that sits just beyond the last gridpoint of the subdomain (but not in the next
subdomain) will have all the necessary grid information available without the need of
making a communications call to neighboring PEs. Here, memory is wasted in exchange
for reduced communications cost. The electrostatic potential uses a double buffer, a buffer
at both ends of the subdomain. This is necessary for the digital filtering and for the CFD.

The flux tube code has been run on a number of platforms. Here we report performance on
two massively parallel computers: (1) the Origin 2000 (O2K) at the Advanced Computer
Laboratory, Los Alamos National Laboratory; and (2) the T3E at the National Energy
Research Scientific Computing Center, Lawrence Berkeley National Laboratory. The use
of the Message Passing Interface (MPI) message-passing library makes the code portable.

Figure 3 shows the performance on the two massively parallel supercomputers. This
scaling study was performed by increasing the domain size with the number of PEs. Note in
Table I that the number of grid points in thez direction corresponds to the number of PEs.
This means that each PE holds the minimum subdomain size possible. For a given domain
size, three runs were performed for 2, 4, 8 particles per grid point. This gives a variety of
configurations, showing performance versus problem size. Figure 3 shows the node seconds
per timestep versus the number of particles. The simulation achieves performance times
of fractions ofµs per particle per timestep. For the larger runs, the O2K shows twice the

FIG. 3. Comparison of the performance on the T3E and O2K. Open symbols are total wall-clock time. Square
symbols are particle sort times. Diamond symbols are Poisson solver/filter times.
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TABLE I

The T3E and O2K Timings for Different Numbers of Processors and Problem Sizes

Wall-clock Wall-clock Speed Speed
No. part. Grid size Part./cell No. PE T3E O2K T3E O2K

210 8× 8× 4 4 4 0.007 0.004 27.3 15.6
211 8× 8× 4 8 4 0.012 0.006 23.4 11.7
212 8× 8× 4 16 4 0.021 0.011 20.5 10.7
213 16× 16× 8 4 8 0.025 0.013 24.4 12.7
214 16× 16× 8 8 8 0.045 0.022 22.0 10.7
215 16× 16× 8 16 8 0.086 0.040 21.0 9.77
216 32× 32× 16 4 16 0.105 0.047 25.6 11.5
217 32× 32× 16 8 16 0.194 0.086 23.7 10.5
218 32× 32× 16 16 16 0.381 0.162 23.3 9.89
219 64× 64× 32 4 32 0.516 0.215 31.5 13.1
220 64× 64× 32 8 32 1.022 0.369 31.2 11.3
221 64× 64× 32 16 32 1.806 0.711 27.6 10.8
222 128× 128× 64 4 64 2.466 0.919 37.6 14.0
223 128× 128× 64 8 64 4.324 1.770 33.0 13.5
224 128× 128× 64 16 64 9.315 3.377 35.5 12.9

Note. Wall-clock time in seconds/step, speed inµs-PE/particle-step.

performance of the T3E, despite having a slower clock speed. Figure 3 shows excellent
linear scaling with problem size.

Figure 3 also shows the wall clock times of the Poisson solver and particle sort times. As
mentioned above, the sort time consumes a large fraction of the total wall clock time. To
some extent, domain cloning improves this in a simple way. Figure 4 shows a simple scaling
study where we fix the size of the domain(64× 64× 64) and the number of particles (221)
and vary the number of processors. Figure 4 shows a log-log plot of seconds per particle
per timestep versus the number of PEs. A straight line fit is made to the timing data. By
this, we obtain the scaling parameterA for τts∝ N A whereτts is the wall clock time per
particle per timestep andN is the number of PEs. One can see that the performance of the

FIG. 4. Performance versus number of processors. A denotes the slope of the line.



600 KIM AND PARKER

simulation is in the fractions of microseconds per particle per timestep for both machines.
Despite its slower performance, the T3E is seen to scale better than the O2K, with a fitted
value ofA=−1.01, whereas the O2K has anA=−.92.

5. DOMAIN CLONING

As the number of PEs increases, the subdomains become more closely packed resulting
in more subdomain boundaries. This increases the time spent in the particle sorting routine
as particles encounter subdomain boundaries more frequently. In addition, the higher grid
resolution gained is unnecessary due to the elongated nature of the typical modes present
in the simulation.

Domain cloning presents a simple solution to this over packing issue that sidesteps the
complications associated with a higher order domain decomposition, e.g., parallelization
of FFT. As its nomenclature suggests, the simulation domain is cloned, i.e., multiple copies
of the same domain are made. The PEs are divided into groups equaling the number of
clones. Each group of PEs is assigned to one of the domain clones. Each domain clone
is loaded with its own set of particles and a one-dimensional domain decomposition is
performed such that each PE has a corresponding subdomain clone. This is easily achieved
in MPI with two calls toMPI COMM SPLIT , the first defining each cloned domain
TUBE COMM and the second defining the subdomain clonesGRID-COMM . The mem-
bers ofTUBE COMM comprise a single domain clone. The corresponding members of
GRID COMM hold identical copies of the grid information but different particles. In the
push phase of the simulation, each clone pushes its own set of particles as described in
the previous section. These particles reside only in their particular domain clone and are
never communicated to other domain clones. Upon depositing the particles onto the grid,
the subdomain clones perform a global sum among themselves (GRID COMM ) to obtain
the total ion density in each subdomain (Fig. 5).

The minor additions made to the original algorithm are the allocation of two additional
communicators and a global sum across clones. Communcations calls must be modified to
remain local among the cloned domains (TUBE COMM ) by changing the communicator
parameter. All other aspects of the program remain unchanged.

FIG. 5. Schematic of a cloned domain. Thick lines connecting processors denote subdomain cloneGRID-
COMM and black dots denote particles.



GYROKINETIC FLUX-TUBE SIMULATION 601

FIG. 6. Particle sort time for the O2K and T3E.

There is a redundant calculation of the electrostatic potential, filtering, and E-field, but
for a small number of clones this inefficiency is small. Each domain clone now has identical
grid information, but retains their own set of particles. In sorting the particles, each cloned
domain has fewer subdomain boundaries and each subdomain spans a larger portion of the
domain, reducing the particle sorting time. Figure 6 shows the sort time per particle per
timestep for both the O2K and T3E. The timing test holds the number of PEs fixed (32 for
the O2K and 64 for the T3E) as well as the perpendicular grid size (64× 64). The parallel
grid size is reduced for increasing numbers of clones, e.g., 32 for 1 clone on the O2K, 16
for 2 clones, etc. The timing is done for increasing numbers of particles. There is a marked
improvement in sorting time with the increasing number of clones, thereby reducing total
wall clock time. For example, with 64 processors and 4 clones there is an over all speedup
of 50%. As shown in Fig. 3, the particle sort time can be a significant fraction of total time.
For large particle runs, requiring very large numbers of PEs, the packing problem results
in sort times that are on the order of 30–40% of the run time. Domain cloning provides a
simple solution.

This simple scheme of domain cloning can be used alone or in conjunction with domain
decomposition as another layer of parallelization. For the case of no domain decomposition,
this reduces to our initial parallelization scheme discussed at the beginning of Section IV.

6. REPRESENTATIVE SIMULATION RESULTS

Finally, we briefly discuss representative simulation results and demonstrate numerical
convergence with respect to particle number. Further application of this model to turbulence
and transport simulation results are given in Refs. [33–36]. This simulation has been used
extensively to study ion heat transport. Figure 7 shows a scan varying the temperature gra-
dient scale length,LT , which is the linear drive of the ion-temperature gradient instability.
Plotted is the ion heat diffusivity (χi ) and linear growth rate (γ ). The linear growth rate was
measured from the linear growth phase of|φ|. Figure 7 shows an important parameterization
of how the nonlinear heat flux scales with the drive of the linear instability and was used to
study the physics basis for various reduced transport models in the “Cyclone Project” [36].
The physical parameters areR/LT = 6.9, R/Ln= 2.2, Te/Ti = 1, r/R= 0.18,q= 1.4, and



602 KIM AND PARKER

FIG. 7. Ion heat diffusivity and linear growth rate versusR/LT , the primary linear drive of the linear instability.

ŝ≡ r
q

dq
dr = 0.78. These are the “Cyclone Team DIII-D base case” parameters which are

representative of a typical H-mode plasma (DIII-D Shot 81499), but assumes a circular
zero-beta large aspect ratio MHD equilibrium, no impurities, adiabatic electrons, and no
fast ions; see Refs. [33, 36] and references within, for further details. The numerical pa-
rameters are 8 particles per cell, 64× 64× 32 grid, with1x=1y= ρs, and a timestep of
1tcs/LT = 0.0345. The code used here has been benchmarked with the other gyrokinetic
flux-tube code of Dimits and co-workers [35, 36].

Figures 8 and 9 show convergence with respect to particle number for both linear in-
terpolation and nearest grid point interpolation schemes. Except for particle number, all
parameters are the same as given above and are well converged with respect to timestep
and grid size. The number of particles ranges from 1 particle per cell to 16 particles per
cell for linear interpolation and 1 particle per cell to 32 particles per cell for nearest grid
point interpolation. Figure 8 shows the ion heat diffusivityχi (proportional to the ion heat
flux since the gradient is held fixed). Even 1 particle per cell is enough for convergence of
the steady-state averageχi in either case. However, the electrostatic field energy does not
converge until there are at least 4 particles per cell. Careful observation of Fig. 8 indicates

FIG. 8. Particle number convergence of the ion heat diffusivity using both nearest grid point and linear
interpolation.
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FIG. 9. Particle number convergence for the electrostatic field energy using both nearest grid point and linear
interpolation.

that there may be late time growth for the nearest grid point method even for 8 particles per
cell. The large oscillations in the field energy in Fig. 9 (as the particle number is decreased)
are due to the growth of the rms value of the weights and excitation of geodesic-acoustic
oscillations [36, 37]. We use either nearest-grid-point or linear interpolation for particle
deposition and calculation of the particle’s electric field. Linear interpolation is obviously
more accurate and smoother; however, it requires 44 more operations for every gather
and scatter operation during the gyroaverage. This results in the nearest grid-point being
approximately twice as fast as linear interpolation.

7. SUMMARY

A description of the computational issues relating to a massively parallel three-
dimensional toroidal nonlinear gyrokinetic flux-tube simulation has been discussed. This
model allows for high resolution simulations of ion-temperature-gradient-driven turbulence
in large tokamak plasmas assuming locality of the turbulence. We have presented techniques
for filtering, gyroaveraging, solving the quasi-neutrality condition (field solve), and toroidal
boundary conditions. The field-line coordinates and associated flux-tube computational do-
main are naturally suited for a one-dimensional decomposition in the direction along the
magnetic field line. The field solve is local in this direction allowing for spectral solution in
the other two perpendicular directions. Timing and scaling results were presented on two
massively parallel supercomputers, the T3E, and O2K. The O2K has approximately twice
the per processor performance of the T3E, and the simulation shows near perfect parallel
scalability in both cases.

We have also presented a new parallelization scheme, domain cloning, which is another
layer of parallelism and a simple alternative to two-dimensional domain decomposition.
Domain cloning is a supplement to domain decomposition that circumvents the problem
associated with the over packing of PEs for a given physical domain size. It was shown to
improve the performance of the particle sorter and reduce the wall clock time.
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